Fast Pattern Detection Using Parallel Neural Processors and Image Decomposition

نویسنده

  • HAZEM M. EL-BAKRY
چکیده

In this paper, an approach to reduce the computation steps required by fast neural networks for the searching process is presented. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately using a fast neural network. The operation of fast neural networks based on applying cross correlation in the frequency domain between the input image and the weights of the hidden neurons. Compared to conventional and fast neural networks, experimental results show that a speed up ratio is achieved when applying this technique to locate human faces automatically in cluttered scenes. Furthermore, faster face detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of fast neural networks. In contrast to using only fast neural networks, the speed up ratio is increased with the size of the input image when using fast neural networks and image decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New fast normalized neural networks for pattern detection

Neural networks have shown good results for detecting a certain pattern in a given image. In this paper, fast neural networks for pattern detection are presented. Such processors are designed based on cross correlation in the frequency domain between the input image and the input weights of neural networks. This approach is developed to reduce the computation steps required by these fast neural...

متن کامل

Fast Normalized Neural Processors for Pattern Detection Based on Cross Correlation Implementation in the Frequency Domain

Neural networks have shown good results for detecting a certain pattern in a given image. In this paper, fast neural networks for pattern detection are presented. Such neural processors are designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. New general formulas for fast cross correlation as well as the speed up ratio are given...

متن کامل

A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition

Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the co...

متن کامل

Sub-Image Detection Using Fast Neural Processors and Image Decomposition

 In this paper, an approach to reduce the computation steps required by fast neural networks for the searching process is presented. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately using a fast neural network. The operation of fast neural networks based on applying cr...

متن کامل

Quad-pixel edge detection using neural network

One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005